The Conjugate Residual Method for Constrained Minimization Problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Conjugate Residual Method for Constrained Minimization Problems

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...

متن کامل

A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems

BOUND-CONSTRAINED MINIMIZATION PROBLEMS MARY ANN BRANCH , THOMAS F. COLEMAN AND YUYING LI Abstract. A subspace adaptation of the Coleman-Li trust region and interior method is proposed for solving large-scale bound-constrained minimization problems. This method can be implemented with either sparse Cholesky factorization or conjugate gradient computation. Under reasonable conditions the converg...

متن کامل

Expected Residual Minimization Method for Stochastic Linear Complementarity Problems

This paper presents a new formulation for the stochastic linear complementarity problem (SLCP), which aims at minimizing an expected residual defined by an NCP function. We generate observations by the quasi-Monte Carlo methods and prove that every accumulation point of minimizers of discrete approximation problems is a minimum expected residual solution of the SLCP. We show that a sufficient c...

متن کامل

A Sequential Ascending Parameter Method for Solving Constrained Minimization Problems

In this paper, a method for solving constrained convex optimization problems is introduced. The problem is cast equivalently as a parametric unconstrained one, the (single) parameter being the optimal value of the original problem. At each stage of the algorithm the parameter is updated and the resulting subproblem is only approximately solved. A linear rate of convergence of the parameter sequ...

متن کامل

A Class of Accelerated Conjugate Direction Methods for Linearly Constrained Minimization Problems

A class of algorithms are described for the minimization of a function of n variables subject to linear inequality constraints. Under weak conditions convergence to a stationary point is demonstrated. The method uses a mixture of conjugate direction constructing and accelerating steps. Any mixture, for example alternation, may be used provided that the subsequence of conjugate direction constru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 1970

ISSN: 0036-1429,1095-7170

DOI: 10.1137/0707032